
Glossier
Sentiment
Analysis

Analyzing reviews from
Glossier's recent
product relaunch

Evelyn Mukherjee INFO 664

Glossier relaunched their customer
favorite product on February 1st,
2023, introducing a new formula and
new packaging design

The New
Balm Dotcom

Goals

Find overall sentiment towards newly
launched product
See what exactly customers are
saying

Methodology
Data collection and analysis done using: Python, R,
Openrefine, ChatGPT API
Python

Gathering initial data
Converting JSON to CSV
Analysis and visualization creation

Openrefine
Clean, split up, and merge datasets

R
Create wordclouds and get word counts

ChatGPT API
Perform sentiment analysis on reviews (using Python)

Gathering Data
sephora_review_dict = []

for offset in range(10):
 url = f'https://api.bazaarvoice.com/data/reviews.json?
 Filter=contentlocale%3Aen*&Filter=ProductId%3AP504525&So
 rt=SubmissionTime%3Adesc&Limit=100&Offset
offset*100}&Include=Products%2CComments&Stats=Reviews&passk
ey=calXm2DyQVjcCy9agq85vmTJv5ELuuBCF2sdg4BnJzJus&apiversion=5.4&Locale=en_
US'
 headers = {'Content-Type' : 'application/json'}
 res = requests.get(url, headers = headers)
 res_json = res.json()
 for review in res_json['Results']:
 review_data = {
 'ProductId' : review['ProductId'],
 'Title' : review['Title'],
 'ReviewText' : review['ReviewText'],
 'SubmissionTime' : review['SubmissionTime'],
 'Rating' : review['Rating']
 }
 sephora_review_dict.append(review_data)

with open('sephora_bdc_reviews.json','a') as f:
 json.dump(sephora_review_dict, f)

glossier_review_dict = []

for page in range(51):
 url = f'https://api-
cdn.yotpo.com/v1/widget/xAJLIqkdZjK3FOIgCqiXbx1OtYADZxhE80pWNsAW/products/
7985671504117/reviews.json?sort=votes_up&per_page=150&page={page+1}'
 headers = {'Content-Type' : 'application/json'}
 res = requests.get(url, headers = headers)
 res_json = res.json()
 for review in res_json['response']['reviews']:
 review_data = {
 'Rating' : review['score'],
 'Title' : review['title'],
 'ReviewText' : review['content'],
 'SubmissionDate' : review['created_at'],
 'Sentiment' : review['sentiment']
 }
 glossier_review_dict.append(review_data)

with open('glossier_bdc_reviews.json','a') as f:
 json.dump(glossier_review_dict, f)

with open('sephora_bdc_reviews.json', encoding = 'utf-8') as sephora_api:
 df = pd.read_json(sephora_api)

df.to_csv('sephora_bdc_reviews.csv', encoding = 'utf-8')

with open('glossier_bdc_reviews.json', encoding = 'utf-8') as glossier_api:
 df = pd.read_json(glossier_api)

df.to_csv('glossier_reviews.csv', encoding = 'utf-8')

Performing Sentiment Analysis
def analyze_sentiment(review):
 res = openai.ChatCompletion.create(
 model="gpt-3.5-turbo",
 max_tokens=5,
 messages=[
 {"role":"system", "content": system_setting},
 {"role":"user", "content": f"""
 Give a sentiment analysis of the following review for a chapstick. Only analyze the sentiment towards the product.
 A review has a title and body. Output should not include any alphabetical characters.
 Do not respond with any text, only a singly float value between -1.0 and 1.0: {review}
 """
 }
]
)
 res_text = res.choices[0].message.content
 print(res_text)
 scores = re.findall(r"[-+]?(?:\d*\.*\d+)", res_text)
 if len(scores) > 0:
 return float(scores[0])
 else:
 return None

sentiments = []

with open('bdc_2023.csv', 'r') as file:

 reader = csv.DictReader(file)

 for row in reader:

 sentiment = analyze_sentiment(f"{row['Title']}, {row['ReviewText']}")
 sentiments.append(sentiment)

print(len(sentiments))
bdc_23 = pd.read_csv('bdc_2023.csv')

bdc_23['Sentiment'] = sentiments

bdc_23.head(10)

bdc_23.to_csv('bdc_2023_sentiment.csv')

1

2 3

Example Code in R

bdc_sentiment_neg_words <- tibble(line=1:nrow(bdc_sentiment_neg), text = bdc_sentiment_neg$ReviewText) %>% unnest_tokens(word,
text, token = 'ngrams', n = 4) %>%
 anti_join(custom_stop_words) %>%
 count(word, sort = TRUE)

print(bdc_sentiment_neg_words)

set.seed(1234)
wordcloud(words = bdc_sentiment_neg_words$word, freq = bdc_sentiment_neg_words$n, min.freq =1,
 max.words=25, random.order=FALSE, rot.per=.35,colors=brewer.pal(8,"Dark2"))

Wordcloud in R vs. Python

Analysis

Average
Rating

and
Sentiment

Made with
matplotlib.pyplot

Negative Reviews
Average Sentiment: -.634
Average Rating: 1.763
Total Reviews: 1462

2023

‘disappointed’: 209
‘dry’ or a variation of the
word: 598
‘cheap’: 36
‘terrible’: 83
‘awful’: 67
‘horrible’: 62

FR
EQ

UE
N

C
IE

S

Positive Reviews
Average Sentiment: .7648
Average Rating: 4.672
Total Reviews: 992

2023

‘love’: 539
‘applicator’: 178
‘moisturizing’: 110
‘hydrating’: 104
‘packaging’: 133
‘perfect’: 73FR

EQ
UE

N
C

IE
S

Average Sentiment for reviews with 'old
formula': -.4388

Average Sentiment for reviews with 'new
formula': -.4074

Average Sentiment for reviews with
'applicator': -.1634

AD
D

IT
IO

N
AL

 S
TA

TS

In
conclusion...

The product’s saving grace was the
new packaging, as its new formulation
left users with a poor taste on their
lips

Due to their cult following, they may
not have a super hard time coming
back from this as ratings and
sentiments are already increasing

Other Fun Wordclouds

Negative Title
n=4

'Cherry'

Thank you!

